Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: covidwho-1006614

ABSTRACT

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins' functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


Subject(s)
Protein Processing, Post-Translational , RNA Virus Infections/enzymology , RNA Virus Infections/virology , RNA Viruses/metabolism , RNA Viruses/pathogenicity , Viral Proteins/metabolism , Acetylation , Chikungunya virus/metabolism , Coronavirus/metabolism , Coronavirus/pathogenicity , Cytopathogenic Effect, Viral , Glycosylation , HIV/metabolism , HIV/pathogenicity , Host Microbial Interactions , Humans , Phosphorylation , RNA Virus Infections/immunology , RNA Virus Infections/metabolism , RNA Viruses/immunology , Ubiquitination , Virus Replication/physiology , Zika Virus/metabolism , Zika Virus/pathogenicity
2.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Article in English | MEDLINE | ID: covidwho-1012135

ABSTRACT

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Subject(s)
Communicable Diseases, Emerging/virology , RNA Viruses/metabolism , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism , Chikungunya virus/genetics , Chikungunya virus/metabolism , Coronavirus/genetics , Coronavirus/metabolism , Ebolavirus/genetics , Ebolavirus/metabolism , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Open Reading Frames , RNA Viruses/genetics , Tumor Suppressor Protein p53/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism
3.
Arch Med Res ; 52(1): 48-57, 2021 01.
Article in English | MEDLINE | ID: covidwho-893598

ABSTRACT

BACKGROUND: Ras-GTPase activating protein SH3-domain-binding proteins (G3BP) are a small family of RNA-binding proteins implicated in regulating gene expression. Changes in expression of G3BPs are correlated to several cancers including thyroid, colon, pancreatic and breast cancer. G3BPs are important regulators of stress granule (SG) formation and function. SG are ribonucleoprotein (RNP) particles that respond to cellular stresses to triage mRNA resulting in transcripts being selectively degraded, stored or translated resulting in a change of gene expression which confers a survival response to the cell. These changes in gene expression contribute to the development of drug resistance. Many RNA viruses, including Chikungunya (and potentially Coronavirus), dismantle SG so that the cell cannot respond to the viral infection. Non-structural protein 3 (nsP3), from the Chikungunya virus, has been shown to translocate G3BP away from SG. Interestingly in cancer cells, the formation of SG is correlated to drug-resistance and blocking SG formation has been shown to reestablish the efficacy of the anticancer drug bortezomib. METHODS: Chikungunya nsP3 was transfected into breast cancer cell lines T47D and MCF7 to disrupt SG formation. Changes in the cytotoxicity of bortezomib were measured. RESULTS: Bortezomib cytotoxicity in breast cancer cell lines changed with a 22 fold decrease in its IC50 for T47D and a 7 fold decrease for MCF7 cells. CONCLUSIONS: Chikungunya nsP3 disrupts SG formation. As a result, it increases the cytotoxicity of the FDA approved drug, bortezomib. In addition, the increased cytotoxicity appears to correlate to improved bortezomib selectivity when compared to control cell lines.


Subject(s)
Bortezomib/pharmacology , Chikungunya Fever/drug therapy , Chikungunya virus/genetics , Cytoplasmic Granules/metabolism , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Chikungunya Fever/metabolism , Chikungunya Fever/pathology , Chikungunya virus/metabolism , Chlorocebus aethiops , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/pathology , DNA Helicases/genetics , Down-Regulation , Drug Resistance, Neoplasm , Female , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , Transfection , Vero Cells , Viral Nonstructural Proteins/administration & dosage , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL